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Abstract We show that the sextet pattern count of every fullerene is strictly smaller
than the Kekulé structure count. This proves a conjecture of Zhang and He, J Math
Chem 38(3):315–324 (2005).
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1 Introduction

Fullerenes are cage polyhedral carbon molecules such that all faces are pentagons and
hexagons. The icosahedral C60, known as the buckminsterfullerene, was predicted by
Osawa [14], and discovered by Kroto et al. [10]. A fullerene with no adjacent penta-
gons is said to satisfy the isolated pentagon rule (IPR), and is called an IPR fullerene.
The buckminsterfullerene is the smallest IPR fullerene, and all the most stable fuller-
enes are IPR fullerenes. Since the discovery of the first fullerene molecule, fullerenes
have been studied by scientists across many disciplines.
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Fig. 1 The lollipop graph L , the truncated icosahedron Ih , and the graph F in Lemma 10

Various properties of fullerene molecules can be studied using mathematical tools
and results. Thus, fullerene graphs were defined as 3-connected cubic plane graphs
with all faces of size five or six; see e.g. the graph Ih in Fig. 1. Such graphs are
suitable models for fullerene molecules: carbon atoms are represented by vertices of
the graph, whereas the edges represent bonds between adjacent atoms. It is known
that there exists a fullerene graph on n vertices for every even n ≥ 20, n �= 22.
See the monograph of Fowler and Manolopoulos [3] for more information on fuller-
enes.

Since carbon atoms in stable molecules are tetravalent, one of the three σ -bonds
of every atom in a fullerene molecule should be augmented by a π -bond to create a
carbon–carbon double bond. A Lewis structure that localizes the σ - and π -bonds to
at most two atoms per bond is called a Kekulé structure. It corresponds to the notion
of perfect matchings in fullerene graphs: a perfect matching in a graph G is a set M of
edges of G such that every vertex of G is incident with precisely one edge of M . We
let pm(G) be the number of perfect matchings of G; this corresponds to the number
of Kekulé structures in a fullerene, also known as the Kekulé count K . The Kekulé
count is an important parameter in theoretical chemistry of benzenoid hydrocarbons,
for it is an empirically established fact that the total π -electron energy of benzenoid
hydrocarbons is a linear function of the Kekulé count (see e.g. the book by Gutman
and Cyvin [5]).

Let M be a perfect matching in a fullerene graph G. A hexagonal face is reso-
nant (with respect to M) if it is incident with precisely three edges in M . A (possibly
empty) set of pairwise vertex-disjoint resonant hexagons is a sextet pattern (or reso-
nant pattern), and the maximum size of a sextet pattern in G is the Clar number of G.
The concept of sextet pattern originates from Clar’s aromatic theory [2]. The sextet
polynomial BG(x) of a benzenoid system G is defined [7,13] as

BG(x) :=
m∑

k=0

r(G, k)xk,
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where r(G, k) is the number of sextet patterns of G of size k, and m is the Clar
number of G. We define R(G) to be the set of resonant patterns of G. Note that
BG(1) = |R(G)|.

It has been shown [4,6,19] that the inequality

BG(1) ≤ pm(G) (1)

holds for all benzenoid systems, with equality for catacondensed benzenoid systems
[7,13]. The inequality (1) was subsequently extended to all planar bipartite graphs
[8,16], and eventually to all planar graphs [20]. However, the Kekulé count is a poor
indicator of π -electronic stability for fullerenes: although experiments show that the
buckminsterfullerene is the most stable isomer of C60, it was shown by Austin et al.
[1] that there are 20 isomers of C60 with a higher Kekulé count than the buckminster-
fullerene.

This led Zhang and He [20] to conjecture that no fullerene graph achieves equality
in (1).

Conjecture 1 (Zhang and He) For every fullerene graph G,

BG(1) < pm(G).

Zhang and He [20] verified Conjecture 1 for fullerene graphs containing at least one
pair of adjacent pentagons, i.e. for fullerene graphs violating the IPR. The purpose of
this paper is to prove the conjecture for all fullerenes, including the most stable ones.
Namely, we prove the following result.

Theorem 2 For every fullerene graph G,

BG(1) < pm(G).

2 Notation

Given a graph G, we let V (G) and E(G) be its vertex set and edge set, respectively.
For H ⊆ V (G) ∪ E(G), we let G − H be the graph obtained from G by removing
the elements in H . Let X ⊂ V (G). We define G[X ] to be the subgraph of G induced
by the vertices in X . We let δ(X) be the set of edges of G with exactly one end-vertex
in X .

A k-edge-cut of G is a set Y of k edges of G for which there exists a set X ⊂ V (G)

such that Y = δ(X). A k-edge-cut Y is cyclic if all the components of G − Y contain
a cycle. Given a plane embedding of a graph G, two faces of G are adjacent if they
share an edge. A cyclic edge-cut Y is trivial if one of the connected components of
G − Y is a cycle.

Zhang and He [20] extended the notion of resonant patterns to all plane graphs.
Let G be a plane graph.The unbounded face of G is the outer face, the other faces
are the inner faces. Given a perfect matching M of G, a face F of G of even size
is resonant (with respect to M) if exactly half of the edges incident with F belong
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to M . A resonant pattern of G is a (possibly empty) set R of pairwise disjoint inner
faces such that there exists a perfect matching M of G with respect to which every
face in R is resonant. In particular, every face in R is bounded by a cycle of even
length. In case G is a fullerene graph, this definition coincides with the one given
in the introduction: it suffices to choose a pentagon as the outer face of G, since a
pentagon is never resonant. Similarly as for fullerene graphs, R(G) is defined as the
set of all resonant patterns of the plane graph G.

We end this section by stating Tutte’s theorem [12,18]. A graph (or a connected
component of a graph) is odd if it has an odd number of vertices. It is even otherwise.

Theorem 3 A graph G has no perfect matching if and only if there exists a set S ⊂
V (G) such that the number of odd components of G − S is greater than |S|.

3 The proof of Theorem 2

We start with a straightforward observation.

Observation 4 Let G be a cubic bridgeless graph, and let Y be a k-edge-cut of G
with k ∈ {2, 3}. Then Y is cyclic if and only if both |X | and |V \ X | are greater than
1, where Y = δ(X).

Proof Set G ′ := G[X ]. By the symmetry of the roles played by X and V \ X , it
suffices to prove that G ′ contains a cycle. To see this, note that G ′ has at most one
vertex of degree less than 2, and hence G ′ cannot be a forest. 	


Since Zhang and He [20] proved that Conjecture 1 is true for fullerene graphs
containing adjacent pentagons, we focus on fullerene graphs that satisfy the IPR. In
particular, such fullerene graphs have no non-trivial cyclic 5-edge-cut. Indeed, fuller-
ene graphs that contain a non-trivial cyclic 5-edge-cut were characterised by Kutnar
and Marušič [11], and by Kardoš and Škrekovski [9]: it turns out that those fullerene
graphs do contain adjacent pentagons.

We now prove a crucial property of fullerene graphs with no non-trivial cyclic
5-edge-cut.

Proposition 5 Let G be a fullerene graph with no non-trivial cyclic 5-edge-cut. Sup-
pose that there is an 8-edge-cut that separates an even subgraph H ⊂ G from G − H,
and G − H contains at least three pairwise non-adjacent pentagons. Then G − H has
a perfect matching.

Proof Suppose that G ′ := G − H does not contain a perfect matching. Then Tutte’s
theorem ensures the existence of a set S of vertices of G ′ such that G ′ − S contains
more than |S| odd components. Let O be the set of odd components of G ′ − S. Since
the number of vertices of G is even, |O| and |S| have the same parity. Thus, since
|O| > |S| we deduce that |O| ≥ |S| + 2.

The number eG(S,O) of edges between O and S in G is at most 3|S|. Moreover,
the number of edges between H and O is at most 8. Hence,

eG(S ∪ H,O) ≤ 3|S| + 8 ≤ 3|O| + 2. (2)
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Let O ∈ O. Notice that the number of edges eO between O and S ∪ H is odd, for
otherwise the subgraph of G induced by O would have an odd number of vertices of
odd degrees. Moreover, eO > 1 because G is bridgeless. Hence, eO ≥ 3 for each odd
component O ∈ O. In particular,

eG(S ∪ H,O) ≥ 3|O|. (3)

So (2) and (3) imply that |O| = |S| + 2.
We now prove that G ′ − S has no even components. To see this, suppose on the

contrary that C is an even component of G ′ − S. By Observation 4, there are at least
4 edges between C and S ∪ H . Then, eG(S ∪ H,O) ≤ 3|S| + 8 − 4 < 3|O|; a
contradiction.

Let s be the number of edges of G[S], and eG(H, S) the number of edges with
an end-vertex in H and the other in S. We observe that s + eG(H, S) ≤ 1. Indeed,
eG(S ∪ H,O) ≤ 3|S| + 8 − 2(s + eG(H, S)) ≤ 3|O| + 2 − 2(s + eG(H, S)). Hence,
s + eG(H, S) ≤ 1 by (3).

Since G ′−S has no even components, this last remark implies that eG(S∪ H,O) �=
3|O| + 1 = 3|S| + 7.

Now observe that each odd component O ∈ O such that eO = 3 is an isolated
vertex of G ′ − S. Indeed, if O contains a cycle, then eO ≥ 5 since G is cyclically
5-edge-connected. Further, if O is a tree then eO is at least twice the number of leaves
of O . Hence O is a tree with one leaf, i.e. a single vertex.

We consider two cases regarding the value of eG(S ∪ H,O).

• eG(S ∪ H,O) = 3|O|. Then eO = 3 for each O ∈ O. Consequently, each odd
component is an isolated vertex of G ′ − S.
Recall that G[S] has at most one edge and G ′ − S has no even components. Thus,
S is not a stable set of G, for otherwise G − H would be bipartite. Consequently,
G[S] contains exactly one edge e, and G − H − e is bipartite. But since G − H
contains at least three pentagons, G − H − e contains a pentagon; a contradiction.

• eG(S ∪ H,O) = 3|O| + 2. Then S is an independent set. Since eO is an odd
number greater than 2 for every odd component O ∈ O, let O ′ be the unique odd
component such that eO ′ = 5. Hence, every odd component other than O ′ is an
isolated vertex of G ′ − S.
Let us now consider O ′. If O ′ contains a cycle, then since G has no non-trivial
cyclic 5-edge-cut, we deduce that O ′ is a pentagon of G (note that G − O ′ cannot
be a cycle: |O| > 1 since G − H is even, and hence G − O ′ contains vertices of
degree 3). If O ′ is acyclic, then it is a tree with at most (and hence exactly) two
leaves (for otherwise eO ′ would be at least 6). Consequently, eO ′ = 5 implies that
O ′ is a path or order 3.
In both cases G − H − O ′ is bipartite; this is a contradiction since G − H contains
at least three pairwise non-adjacent pentagons. 	


Let L be the ‘lollipop graph’ in Fig. 1. Proposition 5 immediately implies the
following.
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Corollary 6 Let G be an IPR fullerene graph, and suppose that H ⊂ G is a sub-
graph isomorphic to L. Then every perfect matching of H can be extended to a perfect
matching of G.

Let us point out that Proposition 5 also implies that every perfect matching of a pair
of adjacent hexagons of an IPR fullerene can be extended to the whole graph.

The following lemma was proved by Zhang and He [20, Lemma 3.3].

Lemma 7 (Zhang and He) Let G be a connected plane graph with a perfect matching,
uv an edge incident with the outer face of G and another face C. Then

R(G) ⊆ R(G−uv) ∪ R(G−u−v) ∪ {R ∪ {C} : R ∈ R(G−uv) ∩ R(G−u−v)}.
(4)

Notice that in the last term of the right-hand side of (4), we may require that R be
vertex-disjoint from C , for otherwise R ∪{C} /∈ R(G). Consequently, under the same
hypothesis as in Lemma 7, we can write

|R(G)| ≤ |R(G − uv) ∪ R(G − u − v)|
+|{R : R ∈ R(G − uv) ∩ R(G − u − v) and V (R) ∩ V (C) = ∅}.

(5)

We shall also use the following theorem of Zhang and He [20, Theorem 2.3] in the
proof of Theorem 2.

Theorem 8 For every plane graph G,

|R(G)| ≤ pm(G).

We formalise the following well-known (and straightforward) fact as an observa-
tion.

Observation 9 For every graph G and every edge uv of G,

pm(G) = pm(G − uv) + pm(G − u − v).

Let Ih be the graph of the truncated icosahedron, and let F be the graph in Fig. 1
consisting of one pentagon and two hexagons.

Lemma 10 Every IPR fullerene graph other than Ih contains a subgraph isomorphic
to F.

Proof If G is a fullerene graph that satisfies the IPR and does not contain a subgraph
isomorphic to F , then every hexagon of G is adjacent to zero or three pentagons. First,
let us show that every hexagon of G is adjacent to three pentagons. If not, then there
exists a hexagon H0 adjacent to zero pentagons and to a hexagon H1 that is adjacent to
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three pentagons (because G is connected and contains pentagons). This would imply
that G violates the IPR; a contradiction.

Let n, e, f , and fd be the number of vertices, edges, faces and faces of size d of G,
respectively. Since G is cubic, 3n = 2e. Substituting into Euler’s formula (n−e+ f =
2), we obtain n = 2 f − 4. Since every hexagon is adjacent to three pentagons, and
there are twelve pentagons altogether, 3 f6 = 5 f5 = 60, so f = f5 + f6 = 32, and
hence n = 60. This implies that G is the truncated icosahedron Ih , and the proof is
complete. 	


We are now ready to prove Theorem 2.

Proof of Theorem 2 If G violates the IPR, then Zhang and He [20] proved that
BG(1) < pm(G). Now, suppose that G is an IPR fullerene graph not containing
F as a subgraph. Lemma 10 implies that G is the truncated icosahedron Ih . Shiu et al.
[17] calculated the sextet polynomial of Ih , and found that BIh (1) = 5, 828; whereas
Schmalz et al. [15] showed that pm(Ih) = 12, 500. In particular BIh (1) < pm(Ih), as
required.

So we may suppose that G is an IPR fullerene containing a subgraph isomorphic
to the graph F of Fig. 1. The graph G can be embedded in the plane so that the outer
face is bounded by the pentagon C1. By Corollary 6, there is a perfect matching M1
of G such that C3 is resonant and uv /∈ M1, and a perfect matching M2 of G such
that C3 is resonant and uv ∈ M2. In particular, C3 is resonant in both G − uv and
G − u − v. Hence,

|{R ∈ R(G − uv) ∩ R(G − u − v) : V (R) ∩ V (C3) = ∅}| < |R(G − uv) ∩ R(G − u − v)|.

Therefore, applying (5) to uv and using Theorem 8 and Observation 9 gives

BG(1) = |R(G)|
< |R(G − uv) ∪ R(G − u − v)| + |R(G − uv) ∩ R(G − u − v)|
= |R(G − uv)| + |R(G − u − v)|
≤ pm(G − uv) + pm(G − u − v)

= pm(G),

as required. This completes the proof of Theorem 2. 	

Acknowledgments The authors are grateful to Dominik Domin for explaining the basic concepts of
valence bond theory.
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